ANALOG DEVICES

FEATURES

Dual-channel, 1024-position resolution
 $25 \mathrm{k} \Omega, 250 \mathrm{k} \Omega$ nominal resistance
 Low temperature coefficient: $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
 Nonvolatile memory stores wiper settings
 Permanent memory write protection
 Wiper setting readback
 Resistance tolerance stored in EEMEM
 Predefined linear increment/decrement instructions
 Predefined $\pm 6 \mathrm{~dB} /$ step log taper increment/decrement instructions
 SPI ${ }^{\circledR}$ compatible serial interface
 3 V to 5 V single supply or $\pm 2.5 \mathrm{~V}$ dual supply
 26 bytes extra nonvolatile memory for user-defined information
 100-year typical data retention, $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$
 Power-on refreshed with EEMEM settings

APPLICATIONS

DWDM laser diode driver, optical supervisory systems
Mechanical potentiometer replacement
Instrumentation: gain, offset adjustment
Programmable voltage to current conversion
Programmable filters, delays, time constants
Programmable power supply
Low resolution DAC replacement
Sensor calibration

GENERAL DESCRIPTION

The AD5235 is a dual-channel, nonvolatile memory, ${ }^{1}$ digitally controlled potentiometer ${ }^{2}$ with 1024 -step resolution. The device performs the same electronic adjustment function as a mechanical potentiometer with enhanced resolution, solid state reliability, and superior low temperature coefficient performance. The AD5235's versatile programming via an SPI compatible serial interface allows 16 modes of operation and adjustment including scratchpad programming, memory storing and restoring, increment/decrement, $\pm 6 \mathrm{~dB} /$ step log taper adjustment, wiper setting readback, and extra EEMEM for user-defined information such as memory data for other components, look-up table, or system identification information.

Figure 1.
In the scratchpad programming mode, a specific setting can be programmed directly to the RDAC^{2} register, which sets the resistance between Terminals W-A and W-B. This setting can be stored into the EEMEM and is restored automatically to the RDAC register during system power-on.

The EEMEM content can be restored dynamically or through external $\overline{\mathrm{PR}}$ strobing, and a $\overline{\mathrm{WP}}$ function protects EEMEM contents. To simplify the programming, the independent or simultaneous linear-step increment or decrement commands can be used to move the RDAC wiper up or down, one step at a time. For logarithmic $\pm 6 \mathrm{~dB}$ changes in wiper setting, the left or right bit shift command can be used to double or half the RDAC wiper setting.

AD5235 patterned resistance tolerance is stored in the EEMEM. The actual end-to-end resistance can, therefore, be known by the host processor in readback mode. The host can execute the appropriate resistance step through a software routine that simplifies open-loop applications as well as precision calibration and tolerance matching applications.

The AD5235 is available in a thin TSSOP-16 package. The part is guaranteed to operate over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

[^0]Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

AD5235

TABLE OF CONTENTS

Specifications 3
Electrical Characteristics- $25 \mathrm{k} \Omega, 250 \mathrm{k} \Omega$ Versions 3
Interface Timing Characteristics- $25 \mathrm{k} \Omega, 250 \mathrm{k} \Omega$ Versions... 5
Timing Diagrams 6
Absolute Maximum Ratings 7
ESD Caution 7
Pin Configuration and Function Descriptions. 8
Typical Performance Characteristics 9
Test Circuits 12
Theory of Operation 14
Scratchpad and EEMEM Programming 14
Basic Operation 14
EEMEM Protection 15
Digital Input/Output Configuration 15
Serial Data Interface 15
Daisy-Chain Operation 15
Terminal Voltage Operating Range 16
Advanced Control Modes 18
RDAC Structure 19
Programming the Variable Resistor 20
Programming the Potentiometer Divider 20
Programming Examples 21
REVISION HISTORY
7/04—Data Sheet Changed from REV. A to REV. B
Updated Formatting Universal
Edits to Features, General Description, and Block Diagram 1
Changes to Specifications 3
Replaced Timing Diagrams 6
Changes to Absolute Maximum Ratings 7
Changes to Pin Function Descriptions 8
Changes to Typical Performance Characteristics 9
Additional Test Circuit (Figure 36) 9
AD5235EVAL Evaluation Kit 21
Applications 22
Bipolar Operation from Dual Supplies 22
Gain Control Compensation 22
High Voltage Operation. 22
DAC. 22
Bipolar Programmable Gain Amplifier 23
10-Bit Bipolar DAC 23
Programmable Voltage Source with Boosted Output 23
Programmable Current Source 24
Programmable Bidirectional Current Source. 24
Programmable Low-Pass Filter 24
Programmable Oscillator 25
Optical Transmitter Calibration with ADN2841 25
Resistance Scaling 26
Resistance Tolerance, Drift, and Temperature Coefficient Mismatch Considerations 26
RDAC Circuit Simulation Model 27
Outline Dimensions 28
Ordering Guide 28
Edits to Theory of Operation 14
Edits to Applications 23
Updated Outline Dimensions 27
8/02-Data Sheet Changed from REV. 0 to REV. A
Change to Features and General Description. 1
Change to Specifications 2
Change to Calculating Actual End-to-End Terminal Resistance Section 14

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS— $\mathbf{2 5} \mathbf{K} \Omega \mathbf{2 5 0} \mathbf{K} \Omega$ VERSIONS

$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$, unless otherwise noted.
The part can be operated at 2.7 V single supply, except from $0^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$, where a minimum of 3 V is needed.
Table 1.

Parameter	Symbol	Conditions	Min	Typ ${ }^{1}$	Max	Unit
DC CHARACTERISTICS— RHEOSTAT MODE (All RDACs)						
Resistor Differential Nonlinearity ${ }^{2}$	R-DNL	Rwb	-2		+2	LSB
Resistor Integral Nonlinearity ${ }^{2}$	R-INL	Rwb	-4		+4	LSB
Nominal Resistor Tolerance	$\Delta \mathrm{R}_{\text {AB }} / \mathrm{R}_{\text {AB }}$	Dx $=0 \times 3 \mathrm{FF}$	-30		+30	
Resistance Temperature Coefficient	$\left(\Delta \mathrm{R}_{A B} / \mathrm{R}_{A B}\right) / \Delta \mathrm{T} \times 10^{6}$			35		ppm/ ${ }^{\circ} \mathrm{C}$
Wiper Resistance	Rw	$\begin{aligned} & I_{w}=1 \mathrm{~V} / R_{w,}, V_{D D}=5 \mathrm{~V}, \\ & \text { Code }=0 \times 200 \end{aligned}$		50	100	
		$\begin{aligned} & I_{W}=1 \mathrm{~V} / R_{W B}, V_{D D}=3 \mathrm{~V}, \\ & C o d e=0 \times 200 \end{aligned}$		200		Ω
Channel Resistance Matching	$\mathrm{R}_{\text {AB1 }} / \mathrm{R}_{\text {AB2 }}$	Ch 1 and 2 Rwe, $\mathrm{Dx}=0 \times 3 \mathrm{FF}$		± 0.1		\%
DC CHARACTERISTICS— POTENTIOMETER DIVIDER MODE (All RDACs)						
Resolution	N				10	Bits
Differential Nonlinearity ${ }^{3}$	DNL		-2		+2	LSB
Integral Nonlinearity ${ }^{3}$	INL		-4		+4	LSB
Voltage Divider Temperature Coefficient	$\left(\Delta \mathrm{V}_{\mathrm{w}} / \mathrm{V}_{\mathrm{w}}\right) / \Delta \mathrm{T} \times 10^{6}$	Code $=$ half-scale		15		ppm/ ${ }^{\circ} \mathrm{C}$
Full-Scale Error	$V_{\text {wfSE }}$	Code $=$ full scale	-6		0	LSB
Zero-Scale Error	V wZSE	Code $=$ zero scale	0		4	LSB
RESISTOR TERMINALS						
Terminal Voltage Range ${ }^{4}$	$\mathrm{V}_{\mathrm{A}, \mathrm{B}, \mathrm{W}}$		Vss		$V_{D D}$	V
Capacitance ${ }^{5} \mathrm{Ax}, \mathrm{Bx}$	$\mathrm{C}_{\mathrm{A}, \mathrm{B}}$	$\mathrm{f}=1 \mathrm{MHz}$, measured to GND,		11		pF
		Code = half-scale				
Capacitance ${ }^{5} \mathrm{Wx}$	Cw	$\mathrm{f}=1 \mathrm{MHz}$, measured to GND,		80		pF
		Code = half-scale				
Common-Mode Leakage Current ${ }^{5,6}$	I cm	$\mathrm{V}_{\mathrm{w}}=\mathrm{V}_{\mathrm{DD}} / 2$		0.01	± 2	$\mu \mathrm{A}$
DIGITAL INPUTS AND OUTPUTS						
Input Logic High	V_{H}	With respect to GND, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	2.4			V
Input Logic Low	VIL	With respect to GND, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			0.8	V
Input Logic High	$\mathrm{V}_{\text {IH }}$	With respect to GND, $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$	2.1			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$	With respect to GND, $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$			0.6	V
Input Logic High	V_{H}	With respect to GND, $\mathrm{V}_{\mathrm{DD}}=$ $+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=-2.5 \mathrm{~V}$	2.0			V
Input Logic Low	VIL	With respect to GND, $\mathrm{V}_{\mathrm{DD}}=$ $+2.5 \mathrm{~V}, \mathrm{~V}$ ss $=-2.5 \mathrm{~V}$			0.5	V
Output Logic High (SDO, RDY)	$\mathrm{V}_{\text {OH }}$	Rpul_-Up $=2.2 \mathrm{k} \Omega$ to 5 V (see Figure 25)	4.9			V
Output Logic Low	Vol	$\begin{aligned} & \text { loL }=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {LoGic }}=5 \mathrm{~V} \\ & \text { (see Figure } 25 \text {) } \end{aligned}$			0.4	V
Input Current	ILI	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{DD}			± 2.25	$\mu \mathrm{A}$
Input Capacitance ${ }^{5}$	CIL			5		pF
POWER SUPPLIES						
Single-Supply Power Range	VDD	$\mathrm{V}_{s \mathrm{~s}}=0 \mathrm{~V}$	3.0		5.5	V
Dual-Supply Power Range	$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$		± 2.25		± 2.75	V
Positive Supply Current	ld	$\mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	4.5	$\mu \mathrm{A}$
	ldD	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$		3.5	6.0	$\mu \mathrm{A}$
Negative Supply Current	Iss	$\begin{aligned} & \mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{IL}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{DD}}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-2.5 \mathrm{~V} \end{aligned}$		3.5	6.0	$\mu \mathrm{A}$

Parameter	Symbol	Conditions	Min	Typ ${ }^{1}$	Max	Unit
EEMEM Store Mode Current	lod (store)	$\begin{aligned} & \mathrm{V}_{\mathrm{HH}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{IL}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{ss}}=\mathrm{GND}, \mathrm{Iss} \approx 0 \end{aligned}$		35		mA
	Iss (store)	$\mathrm{V}_{\mathrm{DD}}=+2.5 \mathrm{~V}, \mathrm{~V}_{S S}=-2.5 \mathrm{~V}$		-35		mA
EEMEM Restore Mode Current ${ }^{7}$	ldD (restore)	$\begin{aligned} & \mathrm{V}_{\mathrm{HH}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{IL}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{SS}}=\mathrm{GND}, \mathrm{ISS} \approx 0 \end{aligned}$	0.3	3	9	mA
	Iss (restore)	$\mathrm{V}_{\mathrm{DD}}=+2.5 \mathrm{~V}, \mathrm{~V}_{S S}=-2.5 \mathrm{~V}$	-0.3	-3	-9	mA
Power Dissipation ${ }^{8}$	PDISS	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$		18	50	$\mu \mathrm{W}$
Power Supply Sensitivity ${ }^{5}$	Pss	$\Delta V_{D D}=5 \mathrm{~V} \pm 10 \%$		0.002	0.01	\%/\%
DYNAMIC CHARACTERISTICS5,9						
Bandwidth	BW	$\begin{aligned} & -3 \mathrm{~dB}, \mathrm{~V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}= \pm 2.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{AB}}=25 \mathrm{k} \Omega / 250 \mathrm{k} \Omega \end{aligned}$		125/12		kHz
Total Harmonic Distortion	THD w	$\mathrm{V}_{\mathrm{A}}=1 \mathrm{Vrms}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$		0.05		\%
		$\begin{aligned} & \mathrm{V}_{\mathrm{A}}=1 \mathrm{Vrms}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{AB}}=50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega \end{aligned}$		0.045		\%
Vw Settling Time	ts	$\begin{aligned} & \mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DD},}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{W}}=0.50 \% \text { error band, } \\ & \mathrm{Code} 0 \times 000 \text { to } 0 \times 200, \\ & \mathrm{R}_{A B}=25 \mathrm{k} \Omega / 250 \mathrm{k} \Omega \end{aligned}$		4/36		$\mu \mathrm{s}$
Resistor Noise Density	$\mathrm{e}_{\text {N_wb }}$	$\mathrm{R}_{A B}=25 \mathrm{k} \Omega / 250 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20/64		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Crosstalk ($\mathrm{C}_{\mathrm{w}_{1} / \mathrm{C}_{\mathrm{w}_{2}} \text {) }{ }^{\text {a }} \text { (}}$	C_{T}	$\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}$, measured $\mathrm{V}_{\mathrm{W} 1}$ with $\mathrm{V}_{\mathrm{W} 2}$ making full-scale change		90/21		nV -s
Analog Crosstalk	$\mathrm{C}_{\text {TA }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{A} 1}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{B} 1}= \\ & -2.5 \mathrm{~V}, \text { measured } \mathrm{V}_{\mathrm{W} 1} \text { with } \mathrm{V}_{\mathrm{W} 2}= \\ & 5 \mathrm{Vp}-\mathrm{p} @ \mathrm{f}=1 \mathrm{kHz}, \text { Code } 1= \\ & 0 \times 200, \text { Code } 2=0 \times 3 \mathrm{FF}, \\ & \mathrm{R}_{\mathrm{AB}}=25 \mathrm{k} \Omega / 250 \mathrm{k} \Omega \end{aligned}$		-81/-62		dB

[^1]
INTERFACE TIMING AND EEMEM RELIABILITY CHARACTERISTICS— 25 K $\Omega, 250$ K Ω VERSIONS

Guaranteed by design and not subject to production test.
See the Timing Diagrams section for the location of measured values. All input control voltages are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}$ (10% to 90% of 3 V) and timed from a voltage level of 1.5 V . Switching characteristics are measured using both $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ and 5 V .

Table 2.

Parameter	Symbol	Conditions	Min	Typ ${ }^{1}$	Max	Unit
Clock Cycle Time (tcyc)	t_{1}		20			ns
$\overline{\text { CS Setup Time }}$	t_{2}		10			ns
CLK Shutdown Time to $\overline{C S}$ Rise	t_{3}		1			tcyc
Input Clock Pulse Width	$\mathrm{t}_{4}, \mathrm{t}_{5}$	Clock level high or low	10			ns
Data Setup Time	t_{6}	From positive CLK transition	5			ns
Data Hold Time	t_{7}	From positive CLK transition	5			ns
$\overline{\mathrm{CS}}$ to SDO-SPI Line Acquire	t_{8}				40	ns
$\overline{\mathrm{CS}}$ to SDO-SPI Line Release	t_{9}				50	ns
CLK to SDO Propagation Delay ${ }^{2}$	t_{10}	$\mathrm{R}_{\mathrm{P}}=2.2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}<20 \mathrm{pF}$			50	ns
CLK to SDO Data Hold Time	t_{11}	$\mathrm{R}_{\mathrm{P}}=2.2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}<20 \mathrm{pF}$	0			ns
$\overline{\mathrm{CS}}$ High Pulse Width ${ }^{3}$	t_{12}		10			ns
$\overline{\mathrm{CS}}$ High to $\overline{\mathrm{CS}} \mathrm{High}^{3}$	t_{13}		4			tcyc
RDY Rise to $\overline{C S}$ Fall	t_{14}		0			ns
$\overline{C S}$ Rise to RDY Fall Time	t_{15}			0.15	0.3	ms
Store/Read EEMEM Time ${ }^{4}$	t_{16}	Applies to instructions $0 \times 2,0 \times 3$, and 0×9		30		ms
$\overline{\text { CS }}$ Rise to Clock Rise/Fall Setup	t_{17}		10			ns
Preset Pulse Width (Asynchronous)	$\mathrm{t}_{\text {PRW }}$	Not shown in timing diagram	50			ns
Preset Response Time to Wiper Setting	$\mathrm{t}_{\text {PRESP }}$	$\overline{\text { PR }}$ pulsed low to refresh wiper positions		140		$\mu \mathrm{s}$
Power-On EEMEM Restore Time	teemem 1			140		$\mu \mathrm{s}$
FLASH/EE MEMORY RELIABILITY						
Endurance ${ }^{5}$			100			kCycles
Data Retention ${ }^{6}$				100		Years

[^2]TIMING DIAGRAMS

*NOTE: EXTRA BIT THAT IS NOT DEFINED, BUT NORMALLY LSB OF CHARACTER PREVIOUSLY TRANSMITTED. THE CPOL = 1 MICROCONTROLLER COMMAND ALIGNS THE INCOMING DATA TO THE POSITIVE EDGE OF THE CLOCK.

Figure 2. $C P H A=1$ Timing Diagram

Figure 3. $C P H A=0$ Timing Diagram

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameter	Rating
$V_{\text {DD }}$ to GND	-0.3 V, +7 V
Vss to GND	$+0.3 \mathrm{~V},-7 \mathrm{~V}$
$\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{\text {SS }}$	7 V
$\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{W}}$ to GND	$\mathrm{V}_{S S}-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
I_{A}, I_{B}, I_{w}	
Pulsed ${ }^{1}$	$\pm 20 \mathrm{~mA}$
Continuous	$\pm 2 \mathrm{~mA}$
Digital Input and Output Voltage to GND	$-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating Temperature Range ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Junction Temperature ($\mathrm{T}, ~ \mathrm{max}$) $^{\text {a }}$	$150^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature, Soldering	
Vapor Phase (60 s)	$215^{\circ} \mathrm{C}$
Infrared (15 s)	$220^{\circ} \mathrm{C}$
Thermal Resistance Junction-to-Ambient θ_{ja}, TSSOP-16	$150^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction-to-Case $\theta_{\mathrm{\jmath}}$, TSSOP-16	$28^{\circ} \mathrm{C} / \mathrm{W}$
Package Power Dissipation	$\left(T_{J} \max -\mathrm{T}_{\mathrm{A}}\right) / \theta_{\text {JA }}$

${ }^{1}$ Maximum terminal current is bounded by the maximum current handling of the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance.
${ }^{2}$ Includes programming of nonvolatile memory.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 4. Pin Configuration
Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	CLK	Serial Input Register Clock. Shifts in one bit at a time on positive clock edges.
2	SDI	Serial Data Input. Shifts in one bit at a time on positive clock CLK edges. MSB loads first.
3	SDO	Serial Data Output. Serves readback and daisy-chain functions. Commands 9 and 10 activate the SDO output for the readback function, delayed by 24 or 25 clock pulses, depending on the clock polarity before and after the data-word (see Figure 2, Figure 3, and Table 7). In other commands, the SDO shifts out the previously loaded SDI bit pattern, delayed by 24 or 25 clock pulses depending on the clock polarity (see Figure 2 and Figure 3). This previously shifted-out SDI can be used for daisychaining multiple devices. Whenever SDO is used, a pull-up resistor in the range of $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ is needed.
4	GND	Ground Pin, Logic Ground Reference.
5	$\mathrm{V}_{\text {ss }}$	Negative Supply. Connect to 0 V for single-supply applications. If $\mathrm{V}_{5 s}$ is used in dual supply, it must be able to sink 35 mA for 30 ms when storing data to EEMEM.
6	A1	Terminal A of RDAC1.
7	W1	Wiper terminal of RDAC1. $\operatorname{ADDR}(\mathrm{RDAC} 1)=0 \times 0$.
8	B1	Terminal B of RDAC1.
9	B2	Terminal B of RDAC2.
10	W2	Wiper terminal of RDAC2. $\operatorname{ADDR}(\mathrm{RDAC} 2)=0 \times 1$.
11	A2	Terminal A of RDAC2.
12	V_{DD}	Positive Power Supply.
13	$\overline{W P}$	Optional Write Protect. When active low, $\overline{\mathrm{WP}}$ prevents any changes to the present contents, except $\overline{\mathrm{PR}}$ strobe. CMD_1 and COMD_8 refresh the RDAC register from EEMEM. Execute a NOP instruction before returning to $\overline{\mathrm{WP}}$ high. Tie $\overline{W P}$ to $V_{D D}$, if not used.
14	$\overline{\mathrm{PR}}$	Optional Hardware Override Preset. Refreshes the scratchpad register with current contents of the EEMEM register. Factory default loads midscale 512_{10} until EEMEM is loaded with a new value by the user. $\overline{\mathrm{PR}}$ is activated at the logic high transition. Tie $\overline{P R}$ to $V_{D D}$, if not used.
15	$\overline{C S}$	Serial Register Chip Select Active Low. Serial register operation takes place when $\overline{C S}$ returns to logic high.
16	RDY	Ready. Active-high open-drain output. Identifies completion of Instructions 2, 3, 8, 9, 10, and $\overline{\mathrm{PR}}$.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. INL vs. Code, $T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$ Overlay, $R_{A B}=25 \mathrm{k} \Omega$

Figure 6. $D N L$ vs. Code, $T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$ Overlay, $R_{A B}=25 \mathrm{k} \Omega$

Figure 7. R-INL vs. Code, $T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$ Overlay, $R_{A B}=25 \mathrm{k} \Omega$

Figure 8. $R-D N L$ vs. Code, $T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$ Overlay, $R_{A B}=25 \mathrm{k} \Omega$

Figure 9. $\left(\Delta V_{w} / V_{w}\right) / \Delta T \times 10^{6}$ Potentiometer Mode Tempco

Figure 10. $\left(\Delta R_{w B} / R_{w B}\right) / \Delta T \times 10^{6}$ Rheostat Mode Tempco

Figure 11. Wiper On Resistance vs. Code

Figure 12. $I_{D D}$ vs. Temperature, $R_{A B}=25 \mathrm{k} \Omega$

Figure 13. IDD vs. Clock Frequency, $R_{A B}=25 \mathrm{k} \Omega$

Figure 14. Total Harmonic Distortion vs. Frequency

Figure 15. $-3 d B$ Bandwidth vs. Resistance (Figure 31)

Figure 16. Gain vs. Frequency vs. Code, $R_{A B}=25 \mathrm{k} \Omega$ (Figure 31)

Figure 17. Gain vs. Frequency vs. Code, $R_{A B}=250 \mathrm{k} \Omega$ (Figure 31)

Figure 18. PSRR vs. Frequency

Figure 19. Power-On Reset, $V_{D D}=2.25 \mathrm{~V}$,
Previously Stored Code $=0 \times 2 \mathrm{AA}$

Figure 20. Midscale Glitch Energy, $R_{A B}=25 \mathrm{k} \Omega$, Code 0x200 to 0x1FF

Figure 21. Midscale Glitch Energy, $R_{A B}=250 \mathrm{k} \Omega$, Code 0x200 to 0x1FF

Figure 22. IDD vs. Time when Storing Data to EEMEM

AD5235

Figure 23. Ioo vs. Time when Restoring Data from EEMEM

Figure 24. Iwb_max vs. Code

TEST CIRCUITS

Figure 25 to Figure 35 define the test conditions used in the Specifications section.

Figure 25. Resistor Position Nonlinearity Error (Rheostat Operation; R-INL, R-DNL)

Figure 26. Potentiometer Divider Nonlinearity Error (INL, DNL)

Figure 27. Wiper Resistance

Figure 28. Power Supply Sensitivity (PSS, PSRR)

Figure 29. Inverting Gain

Figure 30. Noninverting Gain

Figure 31. Gain vs. Frequency

Figure 32. Incremental On Resistance

Figure 33. Common-Mode Leakage Current

Figure 35. Load Circuit for Measuring Vон and Vol (The diode bridge test circuit is equivalent to the application circuit with Rpull-up of $2.2 \mathrm{k} \Omega$.)

THEORY OF OPERATION

The AD5235 digital potentiometer is designed to operate as a true variable resistor. The resistor wiper position is determined by the RDAC register contents. The RDAC register acts as a scratchpad register, allowing unlimited changes of resistance settings. The scratchpad register can be programmed with any position setting using the standard SPI serial interface by loading the 24-bit data-word. In the format of the data-word, the first four bits are commands, the following four bits are addresses, and the last 16 bits are data. Once a specified value is set, this value can be stored in a corresponding EEMEM register. During subsequent power-up, the wiper setting is automatically loaded to that value.

Storing data to EEMEM takes about 25 ms and consumes approximately 35 mA . During this time, the shift register is locked, preventing any changes from taking place. The RDY pin pulses low to indicate the completion of this EEMEM storage. There are also 13 addresses with two bytes each of user-defined data that can be stored in EEMEM.

The following instructions facilitate the user's programming needs (see Table 7 for details):

0 . Do nothing.

1. Restore EEMEM content to RDAC.
2. Store RDAC setting to EEMEM.
3. Store RDAC setting or user data to EEMEM.
4. Decrement 6 dB .
5. Decrement all 6 dB .
6. Decrement one step.
7. Decrement all one step.
8. Reset EEMEM content to RDAC.
9. Read EEMEM content from SDO.
10. Read RDAC wiper setting from SDO.
11. Write data to RDAC.
12. Increment 6 dB .
13. Increment all 6 dB .
14. Increment one step.
15. Increment all one step.

Table 14 to Table 20 provide programming examples that use some of these commands.

SCRATCHPAD AND EEMEM PROGRAMMING

The scratchpad RDAC register directly controls the position of the digital potentiometer wiper. For example, when the scratchpad register is loaded with all zeros, the wiper is connected to Terminal B of the variable resistor. The scratchpad register is a standard logic register with no restriction on the number of changes allowed, but the EEMEM registers have a program erase/write cycle limitation.

BASIC OPERATION

The basic mode of setting the variable resistor wiper position (programming the scratchpad register) is accomplished by loading the serial data input register with Instruction 11 (0 xB), Address 0 , and the desired wiper position data. When the proper wiper position is determined, the user can load the serial data input register with Instruction 2 (0×2), which stores the wiper position data in the EEMEM register. After 25 ms , the wiper position is permanently stored in nonvolatile memory.

Table 5 provides a programming example listing the sequence of serial data input (SDI) words with the serial data output appearing at the SDO pin in hexadecimal format.
Table 5. Write and Store RDAC Settings to EEMEM Registers

SDI	SDO	Action
$0 \times B 00100$	$0 \times X X X X X X$	Writes data 0x100 to the RDAC1 register, Wiper W1 moves to 1/4 full- scale position. Stores RDAC1 register content into the EEMEM1 register.
$0 \times 20 X X X X$	$0 \times B 00100$	Writes 0x200 data into the RDAC2 register, Wiper W2 moves to 1/2 full- scale position. Stores RDAC2 register contents into EEMEM2 register.
0×21 EXXX	$0 \times B 10200$	Ex20XXXX

At system power-on, the scratchpad register is automatically refreshed with the value previously stored in the corresponding EEMEM register. The factory-preset EEMEM value is midscale. The scratchpad register can also be refreshed with the contents of the EEMEM register in three different ways. First, executing Instruction $1(0 \mathrm{x} 1)$ restores the corresponding EEMEM value. Second, executing Instruction $8(0 \times 8)$ resets both channels' EEMEM values. Finally, pulsing the $\overline{\mathrm{PR}}$ pin refreshes both EEMEM settings. Operating the hardware control $\overline{\mathrm{PR}}$ function requires a complete pulse signal. When $\overline{\mathrm{PR}}$ goes low, the internal logic sets the wiper at midscale. The EEMEM value is not loaded until $\overline{\mathrm{PR}}$ returns high.

EEMEM PROTECTION

The write protect $(\overline{\mathrm{WP}})$ pin disables any changes to the scratchpad register contents, except for the EEMEM setting, which can still be restored using Instruction 1, Instruction 8, and the $\overline{\mathrm{PR}}$ pulse. Therefore, $\overline{\mathrm{WP}}$ can be used to provide a hardware EEMEM protection feature. To disable $\overline{\mathrm{WP}}$, it is recommended to execute a NOP instruction before returning $\overline{\mathrm{WP}}$ to logic high.

DIGITAL INPUT/OUTPUT CONFIGURATION

All digital inputs are ESD protected, high input impedance that can be driven directly from most digital sources. Active at logic low, $\overline{\mathrm{PR}}$ and $\overline{\mathrm{WP}}$ must be tied to V_{DD}, if they are not used. No internal pull-up resistors are present on any digital input pins. To avoid floating digital pins that might cause false triggering in a noisy environment, pull-up resistors should be added. This is applicable when the device is detached from the driving source once it is programmed.

The SDO and RDY pins are open-drain digital outputs that need pull-up resistors only if these functions are used. To optimize the speed and power trade-off, use $2.2 \mathrm{k} \Omega$ pull-up resistors.

The equivalent serial data input and output logic is shown in Figure 36. The open-drain output SDO is disabled whenever chip-select $\overline{\mathrm{CS}}$ is in logic high. ESD protection of the digital inputs is shown in Figure 37 and Figure 38.

Figure 36. Equivalent Digital Input-Output Logic

Figure 37. Equivalent ESD Digital Input Protection

Figure 38. Equivalent $\overline{W P}$ Input Protection

SERIAL DATA INTERFACE

The AD5235 contains a 4-wire SPI compatible digital interface (SDI, SDO, $\overline{\mathrm{CS}}$, and CLK). The 24-bit serial data-word must be loaded with MSB first. The format of the word is shown in Table 6. The command bits (C 0 to C 3) control the operation of the digital potentiometer according to the command shown in Table 7. A0 to A3 are the address bits. A0 is used to address RDAC1 or RDAC2. Addresses 2 to 14 are accessible by users for extra EEMEM. Address 15 is reserved for factory usage. Table 9 provides an address map of the EEMEM locations. The data bits (D0 to D9) are the values for the RDAC registers. The data bits (D0 to D15) are the values for the EEMEM registers.

The AD5235 has an internal counter that counts a multiple of 24 bits (a frame) for proper operation. For example, AD5235 works with a 24 -bit or 48 -bit word, but it cannot work properly with a 23 -bit or 25 -bit word. In addition, AD5235 has a subtle feature that, if $\overline{\mathrm{CS}}$ is pulsed without CLK and SDI, the part repeats the previous command (except during power-up). As a result, care must be taken to ensure that no excessive noise exists in the CLK or $\overline{\mathrm{CS}}$ line that might alter the effective number-of-bits pattern. Also, to prevent data from mislocking (due to noise, for example), the counter resets, if the count is not a multiple of four when $\overline{\mathrm{CS}}$ goes high.

The SPI interface can be used in two slave modes: $\mathrm{CPHA}=1$, $\mathrm{CPOL}=1$ and $\mathrm{CPHA}=0, \mathrm{CPOL}=0 . \mathrm{CPHA}$ and CPOL refer to the control bits that dictate SPI timing in the following MicroConverters and microprocessors: ADuC812/ADuC824, M68HC11, and MC68HC16R1/MC68HC 916R1.

DAISY-CHAIN OPERATION

The serial data output pin (SDO) serves two purposes. It can be used to read the contents of the wiper setting and EEMEM values using Instructions 10 and 9, respectively. The remaining instructions (0 to 8,11 to 15) are valid for daisy-chaining multiple devices in simultaneous operations. Daisy-chaining minimizes the number of port pins required from the controlling IC (Figure 39). The SDO pin contains an open-drain N -Ch FET that requires a pull-up resistor, if this function is used. As shown in Figure 39, users need to tie the SDO pin of one package to the SDI pin of the next package. Users might need to increase the clock period, because the pull-up resistor
and the capacitive loading at the SDO-SDI interface might require additional time delay between subsequent devices.

When two AD5235s are daisy-chained, 48 bits of data are required. The first 24 bits (formatted 4 -bit command, 4 -bit address, and 16 -bit data) go to $\underline{U 2}$, and the second 24 bits with the same format go to U1. The $\overline{\mathrm{CS}}$ should be kept low until all 48 bits are clocked into their respective serial registers. The $\overline{\mathrm{CS}}$ is then pulled high to complete the operation.

Figure 39. Daisy-Chain Configuration Using SDO

TERMINAL VOLTAGE OPERATING RANGE

The AD5235's positive $V_{D D}$ and negative $V_{\text {Ss }}$ power supplies define the boundary conditions for proper 3-terminal digital potentiometer operation. Supply signals present on Terminals A, B, and W that exceed $V_{D D}$ or $V_{s s}$ are clamped by the internal forward-biased diodes (see Figure 40).

Figure 40. Maximum Terminal Voltages Set by $V_{D D}$ and $V_{S S}$
The ground pin of the AD5235 device is primarily used as a digital ground reference. To minimize the digital ground bounce, the AD5235 ground terminal should be joined remotely to the common ground (see Figure 41). The digital input control signals to the AD5235 must be referenced to the device ground pin (GND), and satisfy the logic level defined in the Specifications section. An internal level-shift circuit ensures that
the common-mode voltage range of the three terminals extends from $V_{S S}$ to $V_{D D}$, regardless of the digital input level.

Power-Up Sequence

Because there are diodes to limit the voltage compliance at Terminals A, B, and W (Figure 40), it is important to power $V_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$ first before applying any voltage to Terminals A, B, and W. Otherwise, the diode is forward-biased such that $V_{D D} / V_{\text {SS }}$ are powered unintentionally. For example, applying 5 V across Terminals A and B prior to $V_{D D}$ causes the $V_{D D}$ terminal to exhibit 4.3 V. It is not destructive to the device, but it might affect the rest of the user's system. The ideal power-up sequence is GND, $V_{D D} / V_{S S}$, digital inputs, and V_{A}, V_{B}, and V_{w}. The order of powering $\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{W}}$, and digital inputs is not important as long as they are powered after $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$.

Regardless of the power-up sequence and the ramp rates of the power supplies, once $V_{D D} / V_{\text {ss }}$ are powered, the power-on preset activates, which restores the EEMEM values to the RDAC registers.

Layout and Power Supply Bypassing

It is a good practice to employ compact, minimum lead-length layout design. The leads to the input should be as direct as possible with a minimum conductor length. Ground paths should have low resistance and low inductance.

Similarly, it is good practice to bypass the power supplies with quality capacitors for optimum stability. Supply leads to the device should be bypassed with $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ disk or chip ceramic capacitors. Low ESR, $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum or electrolytic capacitors should also be applied at the supplies to minimize any transient disturbance (see Figure 41).

Figure 41. Power Supply Bypassing

In Table 6, command bits are C 0 to C 3 , address bits are A 0 to A 3 , data bits D 0 to D 9 are applicable to RDAC, and D0 to D15 are applicable to EEMEM.

Table 6. 24-Bit Serial Data-Word

	MSB		mm	nd B	te 0				Data	Byte 1							Dat	Byt						LSB
RDAC	C3	C2	C1	CO	0	0	0	A0	X	X	X	X	X	X	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
EEMEM	C3	C2	C1	CO	A3	A2	A1	A0	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

Command instruction codes are defined in Table 7.
Table 7. Command Operation Truth Table ${ }^{1,2,3}$

[^3]
ADVANCED CONTROL MODES

The AD5235 digital potentiometer includes a set of user programming features to address the wide number of applications for these universal adjustment devices.

Key programming features include:

- Scratchpad programming to any desirable values
- Nonvolatile memory storage of the scratchpad RDAC register value in the EEMEM register
- Increment and decrement instructions for the RDAC wiper register
- Left and right bit shift of the RDAC wiper register to achieve $\pm 6 \mathrm{~dB}$ level changes
- 26 extra bytes of user-addressable nonvolatile memory

Linear Increment and Decrement Instructions

The increment and decrement instructions ($14,15,6$, and 7) are useful for linear step-adjustment applications. These commands simplify microcontroller software coding by allowing the controller to send just an increment or decrement command to the device. The adjustment can be individual or ganged control.

For an increment command, executing Instruction 14 automatically moves the wiper to the next resistance segment position. The master increment command, Instruction 15, moves all resistor wipers up by one position.

Logarithmic Taper Mode Adjustment

Four programming instructions produce logarithmic taper increment and decrement of the wiper position control by either individual or ganged control. The 6 dB increment is activated by Instructions 12 and 13, and the 6 dB decrement is activated by Instructions 4 and 5. For example, executing the increment Instruction 12 eleven times moves the wiper in 6 dB per step from 0% to full scale, $\mathrm{R}_{A B}$. When the wiper position is near the maximum setting, the last 6 dB increment instruction causes the wiper to go to the full-scale 1023 code position. Further 6 dB per increment instructions do not change the wiper position beyond its full scale (see Table 8).

The 6 dB step increments and 6 dB step decrements are achieved by shifting the bit internally to the left or right, respectively. The following information explains the nonideal $\pm 6 \mathrm{~dB}$ step adjustment under certain conditions. Table 8 illustrates the operation of the shifting function on the RDAC register data bits. Each table row represents a successive shift operation. Note that the left-shift 12 and 13 instructions were modified such that, if the data in the RDAC register is equal to zero and the data is shifted left, the RDAC register is then set to Code 1 . Similarly, if the data in the RDAC register is greater than or equal to midscale and the data is shifted left, then the
data in the RDAC register is automatically set to full scale. This makes the left-shift function as ideal a logarithmic adjustment as possible.

The right-shift 4 and 5 instructions are ideal only if the LSB is 0 (ideal logarithmic $=$ no error). If the LSB is a 1 , the right-shift function generates a linear half-LSB error, which translates to a number-of-bits dependent logarithmic error, as shown in Figure 42. The plot shows the error of the odd numbers of bits for the AD5235.

Table 8. Detail Left-Shift and Right-Shift Functions for 6 dB Step Increment and Decrement

	Left-Shift	Right-Shift	
	0000000000	1111111111	
	0000000001	0111111111	
	0000000010	0011111111	
	0000000100	0001111111	
	0000001000	0000111111	
Left-Shift	0000010000	0000011111	Right-Shift
($+6 \mathrm{~dB} /$ Step)	0000100000	0000001111	(-6 dB/Step)
	0001000000	0000000111	
	0010000000	0000000011	
	0100000000	0000000001	
	1000000000	0000000000	
	1111111111	0000000000	
	1111111111	0000000000	

Actual conformance to a logarithmic curve between the data contents in the RDAC register and the wiper position for each right-shift 4 and 5 command execution contains an error only for odd numbers of bits. Even numbers of bits are ideal. The graph in Figure 42 shows plots of Log_Error $\left[20 \times \log _{10}\right.$ (error/code)] for the AD5235. For example, Code 3 Log_Error $=$ $20 \times \log _{10}(0.5 / 3)=-15.56 \mathrm{~dB}$, which is the worst case. The plot of Log_Error is more significant at the lower codes.

Figure 42. Plot of Log_Error Conformance for Odd Numbers of Bits Only
(Even Numbers of Bits Are Ideal)

Using $\overline{\mathbf{C S}}$ to Re-Execute a Previous Command

Another subtle feature of the AD5235 is that a subsequent $\overline{\mathrm{CS}}$ strobe, without clock and data, repeats a previous command.

Using Additional Internal Nonvolatile EEMEM

The AD5235 contains additional user EEMEM registers for storing any 16 -bit data such as memory data for other components, look-up tables, or system identification information. Table 9 provides an address map of the internal storage registers shown in the functional block diagram as EEMEM1, EEMEM2, and 26 bytes (13 addresses $\times 2$ bytes each) of USER EEMEM.

Table 9. EEMEM Address Map

EEMEM No.	Address	EEMEM Content for \ldots
1	0000	RDAC1 1,2
2	0001	RDAC2 2
3	0010	USER1 3
4	0011	USER2 2
\ldots	\ldots	\ldots
15	1110	USER13 2
16	1111	RAB1 Tolerance 4

${ }^{1}$ RDAC data stored in EEMEM locations is transferred to the corresponding RDAC register at power-on, or when Instruction 1, Instruction 8, and $\overline{\mathrm{PR}}$ are executed.
${ }^{2}$ Execution of Instruction 1 leaves the device in the read mode power consumption state. After the last Instruction 1 is executed, the user should perform a NOP, Instruction 0, to return the device to the low power idling state.
${ }^{3}$ USERx are internal nonvolatile EEMEM registers available to store and retrieve constants and other 16-bit information using Instruction 3 and Instruction 9, respectively.
${ }^{4}$ Read only.

Calculating Actual End-to-End Terminal Resistance

The resistance tolerance is stored in the EEMEM register during factory testing. The actual end-to-end resistance can, therefore, be calculated, which is valuable for calibration, tolerance matching, and precision applications. Note that this value is read only and the $\mathrm{R}_{A B 2}$ matches with $\mathrm{R}_{A B 1}$, typically 0.1%.

The resistance tolerance in percentage is contained in the last 16 bits of data in EEMEM Register 15. The format is the sign magnitude binary format with the MSB designate for sign ($0=$ negative and $1=$ positive), the next 7 MSB designate the integer number, and the 8 LSB designate the decimal number (see Table 11).

For example, if $\mathrm{R}_{\text {AB_RAted }}=250 \mathrm{k} \Omega$ and the data in the SDO shows XXXX XXXX 100111000000 1111, $\mathrm{R}_{\text {AB_actual }}$ can be
calculated as follows:

> MSB: $1=$ Positive
> Next 7 LSB: $0011100=28$
> 8 LSB: $00001111=15 \times 2^{-8}=0.06$
> \% Tolerance $=28.06 \%$
> Therefore, $R_{A B _A C T U A L ~}=320.15 \mathrm{k} \Omega$

RDAC STRUCTURE

The patent-pending RDAC contains multiple strings of equal resistor segments with an array of analog switches that acts as the wiper connection. The number of positions is the resolution of the device. The AD5235 has 1024 connection points, allowing it to provide better than 0.1% settability resolution. Figure 43 shows an equivalent structure of the connections among the three terminals of the RDAC. The SW_{A} and SW_{B} are always on, while the switches $\operatorname{SW}(0)$ to $\operatorname{SW}\left(2^{\mathrm{N}}-1\right)$ are on one at a time, depending on the resistance position decoded from the data bits. Because the switch is not ideal, there is a 50Ω wiper resistance, Rw. Wiper resistance is a function of supply voltage and temperature. The lower the supply voltage or the higher the temperature, the higher the resulting wiper resistance. Users should be aware of the wiper resistance dynamics, if accurate prediction of the output resistance is needed.

Figure 43. Equivalent RDAC Structure

Table 10. Nominal Individual Segment Resistor Values

Device Resolution	$\mathbf{2 5} \mathbf{~ k} \boldsymbol{\Omega}$	$\mathbf{2 5 0} \mathbf{~ k} \boldsymbol{\Omega}$
1024 -Step	24.4	244

Table 11. Calculating End-to-End Terminal Resistance

AD5235

PROGRAMMING THE VARIABLE RESISTOR Rheostat Operation

The nominal resistance of the RDAC between Terminals A and $B, R_{A B}$, is available with $25 \mathrm{k} \Omega$ and $250 \mathrm{k} \Omega$ with 1024 positions (10-bit resolution). The final digits of the part number determine the nominal resistance value, for example, $25 \mathrm{k} \Omega=25 ; 250 \mathrm{k} \Omega=250$.

The 10 -bit data-word in the RDAC latch is decoded to select one of the 1024 possible settings. The following discussion describes the calculation of resistance R_{wB} at different codes of a $25 \mathrm{k} \Omega$ part. The wiper's first connection starts at Terminal B for data 0×000. $\mathrm{R}_{\text {wB }}(0)$ is 50Ω because of the wiper resistance, and it is independent of the nominal resistance. The second connection is the first tap point where $\mathrm{R}_{\mathrm{WB}}(1)$ becomes $24.4 \Omega+$ $50 \Omega=74.4 \Omega$ for data $0 x 001$. The third connection is the next tap point representing $\mathrm{R}_{\mathrm{wB}}(2)=48.8 \Omega+50 \Omega=98.8 \Omega$ for data 0x002, and so on. Each LSB data value increase moves the wiper up the resistor ladder until the last tap point is reached at $\mathrm{R}_{\mathrm{WB}}(1023)=25026 \Omega$. See Figure 43 for a simplified diagram of the equivalent RDAC circuit. When $\mathrm{R}_{\text {wb }}$ is used, Terminal A can be left floating or tied to the wiper.

Figure 44. $R_{w A}(D)$ and $R_{w B}(D)$ vs. Decimal Code
The general equation that determines the programmed output resistance between $W x$ and $B x$ is

$$
\begin{equation*}
R_{W A}(D)=\frac{D}{1024} \times R_{A B}+R_{W} \tag{1}
\end{equation*}
$$

where:
D is the decimal equivalent of the data contained in the RDAC register.
$R_{A B}$ is the nominal resistance between Terminals A and B.
R_{W} is the wiper resistance.
For example, the output resistance values in Table 12 are set for the given RDAC latch codes (applies to $\mathrm{R}_{A B}=25 \mathrm{k} \Omega$ digital potentiometers).

Table 12. R_{wB} (D) at Selected Codes for $\mathrm{R}_{\mathrm{AB}}=25 \mathrm{k} \Omega$

$\mathbf{D}(\mathbf{D E C})$	RwB $\mathbf{(D)}(\mathbf{\Omega})$	Output State
1023	25,026	Full scale
512	12,550	Midscale
1	74.4	1 LSB
0	50	Zero scale (wiper contact resistor)

Note that, in the zero-scale condition, a finite wiper resistance of 50Ω is present. Care should be taken to limit the current flow between W and B in this state to no more than 20 mA to avoid degradation or possible destruction of the internal switches.

Like the mechanical potentiometer that the RDAC replaces, the AD5235 part is totally symmetrical. The resistance between Wiper W and Terminal A also produces a digitally controlled complementary resistance, Rwa. Figure 44 shows the symmetrical programmability of the various terminal connections. When $R_{w A}$ is used, Terminal B can be left floating or tied to the wiper. Setting the resistance value for R_{wA} starts at a maximum value of resistance and decreases as the data loaded in the latch is increased in value.

The general transfer equation for this operation is

$$
\begin{equation*}
R_{W A}(D)=\frac{1024-D}{1024} \times R_{A B}+R_{W} \tag{2}
\end{equation*}
$$

For example, the output resistance values in Table 13 are set for the given RDAC latch codes (applies to $\mathrm{R}_{A B}=25 \mathrm{k} \Omega$ digital potentiometers).

Table 13. $\mathrm{R}_{\mathrm{WA}}(\mathrm{D})$ at Selected Codes for $\mathrm{R}_{A B}=25 \mathrm{k} \Omega$

D (DEC)	Rwa $\mathbf{(D)}(\mathbf{\Omega})$	Output State
1023	74.4	Full scale
512	12,550	Midscale
1	25,026	1 LSB
0	25,050	Zero scale (wiper contact resistance)

The typical distribution of R_{AB} from channel to channel is $\pm 0.2 \%$ within the same package. Device-to-device matching is process lot dependent upon the worst case of $\pm 30 \%$ variation. However, the change in $\mathrm{R}_{A B}$ with temperature has a $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient.

PROGRAMMING THE POTENTIOMETER DIVIDER Voltage Output Operation

The digital potentiometer can be configured to generate an output voltage at the wiper terminal that is proportional to the input voltages applied to Terminals A and B. For example, connecting Terminal A to 5 V and Terminal B to ground produces an output voltage at the wiper that can be any value from 0 V to 5 V . Each LSB of voltage is equal to the voltage applied across Terminal AB divided by the 2^{N} position resolution of the potentiometer divider.

Because AD5235 can also be supplied by dual supplies, the general equation defining the output voltage at V_{w} with respect to ground for any given input voltages applied to Terminals A and B is

$$
\begin{equation*}
V_{W}(D)=\frac{D}{1024} \times V_{A B}+V_{B} \tag{3}
\end{equation*}
$$

Equation 3 assumes that V_{w} is buffered so that the effect of wiper resistance is minimized. Operation of the digital potentiometer in divider mode results in more accurate operation over temperature. Here, the output voltage is dependent on the ratio of the internal resistors and not the absolute value; therefore, the drift improves to $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. There is no voltage polarity restriction between Terminals A, B, and W as long as the terminal voltage ($\mathrm{V}_{\text {term }}$) stays within $\mathrm{V}_{\text {SS }}<\mathrm{V}_{\text {TERM }}<\mathrm{V}_{\mathrm{DD}}$.

PROGRAMMING EXAMPLES

The following programming examples illustrate a typical sequence of events for various features of the AD5235. See Table 7 for the instructions and data-word format. The instruction numbers, addresses, and data appearing at the SDI and SDO pins are in hexadecimal format.

Table 14. Scratchpad Programming

SDI	SDO	Action
0xB00100	0xXXXXXX	Writes data 0x100 into RDAC1 register, Wiper W1 moves to 1/4 full-scale position.
0xB10200	0xB00100	Loads data 0x200 into RDAC2 register, Wiper W2 moves to 1/2 full-scale position.

Table 15. Incrementing RDAC Followed by Storing the Wiper Setting to EEMEM

SDI	SDO	Action
$0 \times B 00100$	$0 \times X X X X X X$	Writes data 0x100 into RDAC1 register, Wiper W1 moves to 1/4 full- scale position.
$0 \times E 0 X X X X$	$0 \times$ B00100	Increments RDAC1 register by one to 0x101. Increments RDAC1 register by one to
$0 \times 0 \times X X X$	$0 x E 0 X X X X$	0x102. Continue until desired wiper position is reached.
Stores RDAC2 register data into		
EEMEM1. Optionally tie WP to GND to		
protect EEMEM values.		

The EEMEM values for the RDACs can be restored by poweron, by strobing the $\overline{\mathrm{PR}}$ pin, or by the two commands shown in Table 16.

Table 16. Restoring the EEMEM Values to RDAC Registers

SDI	SDO	Action
$0 \times 10 X X X X$	$0 \times X X X X X X$	Restores the EEMEM1 value to the RDAC1 register.
$0 x 00 X X X X$	$0 \times 10 X X X X$	NOP. Recommended step to minimize power consumption.

Table 17. Using Left-Shift by One to Increment 6 dB Steps

SDI	SDO	Action
$0 x C 0 X X X X$	$0 x X X X X X X$	Moves Wiper 1 to double the present data contained in the RDAC1 register.
$0 x C 1 X X X X$	$0 x C 0 X X X X$	Moves Wiper 2 to double the present data contained in the RDAC2 register.

Table 18. Storing Additional User Data in EEMEM

SDI	SDO	Action
0x32AAAA	0xXXXXXX	Stores data 0xAAAA in the extra EEMEM location USER1. (Allowable to address in 13 locations with a maximum of 16 bits of data.)
0×335555	0x32AAAA	Stores data 0x5555 in the extra EEMEM location USER2. (Allowable to address in 13 locations with a maximum of 16 bits of data.)

Table 19. Reading Back Data from Memory Locations

SDI	SDO	Action
$0 \times 92 \mathrm{XXXX}$	0xXXXXXX	Prepares data read from USER1 EEMEM location.
$0 \times 00 \mathrm{XXXX}$	0×92 AAAAA	NOP Instruction 0 sends a 24-bit word out of SDO, where the last 16 bits contain the contents in USER1 EEMEM location. The NOP command ensures that the device returns to the idle power dissipation state.

Table 20. Reading Back Wiper Settings

SDI	SDO	Action
0xB00200	0xXXXXXX	Writes RDAC1 to midscale.
$0 \times C 0 X X X X$	$0 \times B 00200$	Doubles RDAC1 from midscale to full scale.
0xA0XXXX	0xC0XXXX	Prepares reading wiper setting from RDAC1 register.
0xXXXXXX	0xA003FF	Reads back full-scale value from SDO.

AD5235EVAL EVALUATION KIT

Analog Devices offers a user-friendly AD5235EVAL evaluation kit that can be controlled by a personal computer through a printer port. The driving program is self-contained; no programming languages or skills are needed.

APPLICATIONS

BIPOLAR OPERATION FROM DUAL SUPPLIES

The AD5235 can be operated from dual supplies $\pm 2.5 \mathrm{~V}$, which enables control of ground referenced ac signals or bipolar operation. AC signals as high as $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$ can be applied directly across Terminals A to B with output taken from Terminal W. See Figure 45 for a typical circuit connection.

Figure 45. Bipolar Operation from Dual Supplies

GAIN CONTROL COMPENSATION

A digital potentiometer is commonly used in gain control such as the noninverting gain amplifier shown in Figure 46.

Figure 46. Typical Noninverting Gain Amplifier
When RDAC B terminal parasitic capacitance is connected to the op amp noninverting node, it introduces a zero for the $1 / b_{0}$ term with $20 \mathrm{~dB} / \mathrm{dec}$, while a typical op amp GBP has $-20 \mathrm{~dB} /$ dec characteristics. A large R2 and finite C1 can cause this zero's frequency to fall well below the crossover frequency. Therefore, the rate of closure becomes $40 \mathrm{~dB} / \mathrm{dec}$, and the system has a 0° phase margin at the crossover frequency. The output can ring or oscillate, if an input is a rectangular pulse or step function. Similarly, it is also likely to ring when switching between two gain values; this is equivalent to a stop change at the input.

Depending on the op amp GBP, reducing the feedback resistor might extend the zero's frequency far enough to overcome the problem. A better approach is to include a compensation capacitor, C 2 , to cancel the effect caused by C1. Optimum compensation occurs when $\mathrm{R} 1 \times \mathrm{C} 1=\mathrm{R} 2 \times \mathrm{C} 2$. This is not an option because of the variation of R 2 . As a result, one can use the relationship above and scale C 2 as if R 2 were at its maxi-
mum value. Doing this might overcompensate and compromise the performance when R2 is set at low values. On the other hand, it avoids the ringing or oscillation at the worst case. For critical applications, C 2 should be found empirically to suit the need. In general, C 2 in the range of a few pF to no more than a few tenths of pF is usually adequate for the compensation.

Similarly, W-A terminal capacitances are connected to the output (not shown); their effect at this node is less significant and the compensation can be avoided in most cases.

HIGH VOLTAGE OPERATION

The digital potentiometer can be placed directly in the feedback or input path of an op amp for gain control, provided that the voltage across Terminals A-B, W-A, or W-B does not exceed $|5 \mathrm{~V}|$. When high voltage gain is needed, users should set a fixed gain in an op amp and let the digital potentiometer control the adjustable input. Figure 47 shows a simple implementation.

Similarly, a compensation capacitor C might be needed to dampen the potential ringing when the digital potentiometer changes steps. This effect is prominent when stray capacitance at the inverted node is augmented by a large feedback resistor. Usually, a pF Capacitor C is adequate to combat the problem.

DAC

For DAC operation (Figure 48), it is common to buffer the output of the digital potentiometer unless the load is much larger than $\mathrm{R}_{\text {wb. }}$. The buffer serves the purpose of impedance conversion and can drive heavier loads.

Figure 48. Unipolar 10-Bit DAC

BIPOLAR PROGRAMMABLE GAIN AMPLIFIER

For applications requiring bipolar gain, Figure 49 shows one implementation. Digital potentiometer U1 sets the adjustment range; the wiper voltage $\mathrm{V}_{\mathrm{W}_{2}}$ can, therefore, be programmed between V_{i} and $-\mathrm{KV}_{\mathrm{i}}$ at a given U2 setting. Configure A 2 as a noninverting amplifier that yields a transfer function:

$$
\begin{equation*}
\frac{V_{O}}{V_{I}}=\left(1+\frac{R 2}{R 1}\right) \times\left(\frac{D 2}{1024} \times(1+K)-K\right) \tag{4}
\end{equation*}
$$

where K is the ratio of $\mathrm{R}_{\mathrm{WB}} / \mathrm{R}_{\mathrm{wAl}}$ set by U 1 .

Figure 49. Bipolar Programmable Gain Amplifier
In the simpler (and much more usual) case where $K=1, V_{O}$ is simplified to

$$
\begin{equation*}
V_{O}=\left(1+\frac{R 2}{R 1}\right)\left(\frac{2 D_{2}}{1024}-1\right) \times V_{i} \tag{5}
\end{equation*}
$$

Table 21 shows the result of adjusting D2, with A2 configured as a unity gain, a gain of 2 , and a gain of 10 . The result is a bipolar amplifier with linearly programmable gain and 1024-step resolution.

Table 21. Result of Bipolar Gain Amplifier

\mathbf{D}	$\mathbf{R 1}=\boldsymbol{\infty}, \mathbf{R 2}=\mathbf{0}$	$\mathbf{R 1}=\mathbf{R 2}$	$\mathbf{R 2}=\mathbf{9} \mathbf{R 1}$
0	-1	-2	-10
256	-0.5	-1	-5
512	0	0	0
768	0.5	1	5
1023	0.992	1.984	9.92

10-BIT BIPOLAR DAC

If the circuit in Figure 49 is changed with the input taken from a precision reference, U1 is set to midscale, and A2 is configured as a buffer, a 10-bit bipolar DAC can be realized (Figure 48). Compared to the conventional DAC, this circuit offers comparable resolution, but not the precision because of the wiper resistance effects. Degradation of the nonlinearity and temperature coefficient is prominent near the low values of the adjustment range. On the other hand, this circuit offers a unique
nonvolatile memory feature that in some cases outweighs any shortfall in precision.

Without consideration of the wiper resistance, the output of this circuit is approximately

$$
\begin{equation*}
V_{O}=\left(\frac{2 D_{2}}{1024}-1\right) \times V_{R E F} \tag{6}
\end{equation*}
$$

Figure 50. 10-Bit Bipolar DAC

PROGRAMMABLE VOLTAGE SOURCE WITH BOOSTED OUTPUT

For applications that require high current adjustment, such as a laser diode driver or tunable laser, a boosted voltage source can be considered (see Figure 51).

Figure 51. Programmable Booster Voltage Source
In this circuit, the inverting input of the op amp forces the Vout to be equal to the wiper voltage set by the digital potentiometer. The load current is then delivered by the supply via the N-Ch FET $\mathrm{N}_{1} . \mathrm{N}_{1}$ power handling must be adequate to dissipate $\left(\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{O}}\right) \times \mathrm{I}_{\mathrm{L}}$ power. This circuit can source a maximum of 100 mA with a 5 V supply.

For precision applications, a voltage reference such as ADR421, ADR03, or ADR370 can be applied at Terminal A of the digital potentiometer.

PROGRAMMABLE CURRENT SOURCE

A programmable current source can be implemented with the circuit shown in Figure 52.

Figure 52. Programmable Current Source
REF191 is a unique low supply headroom and high current handling precision reference that can deliver 20 mA at 2.048 V . The load current is simply the voltage across Terminals B-W of the digital potentiometer divided by R_{s} :

$$
\begin{equation*}
I_{L}=\frac{V_{R E F} \times D}{R_{S} \times 1024} \tag{7}
\end{equation*}
$$

The circuit is simple, but be aware that there are two issues. First, dual-supply op amps are ideal, because the ground potential of REF191 can swing from -2.048 V at zero scale to V_{L} at full scale of the potentiometer setting. Although the circuit works under single supply, the programmable resolution of the system is reduced by half. Second, the voltage compliance at V_{L} is limited to 2.5 V or equivalently a 125Ω load. Should higher voltage compliance be needed, users can consider digital potentiometers AD5260, AD5280, and AD7376. Figure 53 shows an alternate circuit for high voltage compliance.

To achieve higher current, such as when driving a high power LED, the user can replace the U1 with an LDO, reduce Rs, and add a resistor in series with the digital potentiometer's A terminal. This limits the potentiometer's current and increases the current adjustment resolution.

PROGRAMMABLE BIDIRECTIONAL CURRENT SOURCE

For applications that require bidirectional current control or higher voltage compliance, a Howland current pump can be a solution (Figure 53). If the resistors are matched, the load current is

$$
\begin{equation*}
I_{L}=\frac{\frac{R 2 A+R 2 B}{R 1}}{R 2 B} \times V_{W} \tag{8}
\end{equation*}
$$

Figure 53. Programmable Bidirectional Current Source
R2B, in theory, can be made as small as necessary to achieve the current needed within the A2 output current-driving capability. In this circuit, OP2177 delivers $\pm 5 \mathrm{~mA}$ in either direction, and the voltage compliance approaches 15 V . Without the additions of C 1 and C 2 , the output impedance (looking into V_{L}) can be shown as

$$
\begin{equation*}
Z_{0}=\frac{R 1^{\prime} R 2 B(R 1+R 2 A)}{R 1 R 2^{\prime}-R 1^{\prime}(R 2 A+R 2 B)} \tag{9}
\end{equation*}
$$

Z_{0} can be infinite, if resistors R1' and R2' match precisely with R1 and R2A + R2B, respectively, which is desirable. On the other hand, Z_{0} can be negative, if the resistors are not matched and cause oscillation. As a result, C 1 , in the range of a few pF , is needed to prevent oscillation from the negative impedance.

PROGRAMMABLE LOW-PASS FILTER

In analog-to-digital conversions, it is common to include an antialiasing filter to band limit the sampling signal. The dualchannel AD5235 can, therefore, be used to construct a secondorder Sallen-Key low-pass filter, as shown in Figure 54.

Figure 54. Sallen-Key Low-Pass Filter
The design equations are

$$
\begin{equation*}
\frac{V_{O}}{V_{i}}=\frac{\omega_{f}^{2}}{S^{2}+\frac{\omega_{f}}{Q} S+\omega_{f}^{2}} \tag{10}
\end{equation*}
$$

$$
\begin{align*}
& \omega_{O}=\sqrt{\frac{1}{R 1 R 2 C 1 C 2}} \tag{11}\\
& Q=\frac{1}{R 1 C 1}+\frac{1}{R 2 C 2} \tag{12}
\end{align*}
$$

Users can first select some convenient values for the capacitors. To achieve maximally flat bandwidth, where $Q=0.707$, let C1 be twice the size of $C 2$ and let R1 equal R2. As a result, the user can adjust R1 and R2 concurrently to the same setting to achieve the desirable bandwidth.

PROGRAMMABLE OSCILLATOR

In a classic Wien-bridge oscillator, shown in Figure 55, the Wien network ($\mathrm{R}, \mathrm{R}^{\prime} \mathrm{C}, \mathrm{C}^{\prime}$) provides positive feedback, while R1 and R2 provide negative feedback.

Figure 55. Programmable Oscillator with Amplitude Control
At the resonant frequency, f_{0}, the overall phase shift is zero, and the positive feedback causes the circuit to oscillate. With $R=R^{\prime}$, $C=C^{\prime}$, and $R 2=R 2 A /\left(R 2 B+R_{\text {DIODE }}\right)$, the oscillation frequency is

$$
\begin{equation*}
\omega_{O}=\frac{1}{R C} \text { or } f_{O}=\frac{1}{2 \pi R C} \tag{13}
\end{equation*}
$$

where R is equal to $R_{W A}$ such that

$$
\begin{equation*}
R=\frac{1024-D}{1024} R_{A B} \tag{14}
\end{equation*}
$$

At resonance, setting

$$
\begin{equation*}
\frac{R 2}{R 1}=2 \tag{15}
\end{equation*}
$$

balances the bridge. In practice, $R 2 / R 1$ should be set slightly larger than 2 to ensure that the oscillation can start. On the other hand, the alternate turn-on of the diodes D1 and D2 ensures that $R 2 / R 1$ is smaller than 2 , momentarily stabilizing the oscillation.

Once the frequency is set, the oscillation amplitude can be turned by $R 2 B$, because

$$
\begin{equation*}
\frac{2}{3} V_{O}=I_{D} R 2 B+V_{D} \tag{16}
\end{equation*}
$$

V_{O}, I_{D}, and V_{D} are interdependent variables. With proper selection of $R 2 B$, an equilibrium is reached such that $V_{W F}$ converges. $R 2 B$ can be in series with a discrete resistor to increase the amplitude, but the total resistance cannot be too large to saturate the output.

In both circuits shown in Figure 54 and Figure 55, the frequency tuning requires that both RDACs be adjusted concurrently to the same settings. Because the two channels might be adjusted one at a time, an intermediate state occurs that might not be acceptable for some applications. Of course, the increment/ decrement instructions ($5,7,13$, and 15) can all be used. Different devices can also be used in daisy-chain mode so that parts can be programmed to the same settings simultaneously.

OPTICAL TRANSMITTER CALIBRATION WITH ADN2841

The AD5235, together with the multirate 2.7 Gbps laser diode driver ADN2841, forms an optical supervisory system in which the dual digital potentiometers can be used to set the laser average optical power and extinction ratio (Figure 56). AD5235 is particularly suited for the optical parameter settings because of its high resolution and superior temperature coefficient characteristics.

Figure 56. Optical Supervisory System
The ADN2841 is a 2.7 Gbps laser diode driver that uses a unique control algorithm to manage the laser's average power and extinction ratio after the laser's initial factory calibration. The ADN2841 stabilizes the laser's data transmission by continuously monitoring its optical power and correcting the variations caused by temperature and the laser's degradation over time. In the ADN2841, the IMPD monitors the laser diode current. Through its dual loop power and extinction ratio
control calibrated by the AD5235's dual RDACs, the internal driver controls the bias current, $\mathrm{I}_{\text {BIAs }}$, and consequently the average power. It also regulates the modulation current, $I_{\text {MODP }}$, by changing the modulation current linearly with slope efficiency. Any changes in the laser threshold current or slope efficiency are, therefore, compensated. As a result, this optical supervisory system minimizes the laser characterization efforts and, therefore, enables designers to apply comparable lasers from multiple sources.

RESISTANCE SCALING

The AD5235 offers $25 \mathrm{k} \Omega$ or $250 \mathrm{k} \Omega$ nominal resistance. For users who need lower resistance but must still maintain the number of adjustment steps, they can parallel multiple devices. For example, Figure 57 shows a simple scheme of paralleling two channels of RDACs. To adjust half the resistance linearly per step, users need to program both RDACs concurrently with the same settings.

Figure 57. Reduce Resistance by Half with Linear Adjustment Characteristics
In voltage divider mode, by paralleling a discrete resistor as shown in Figure 58, a proportionately lower voltage appears at Terminal A-to-B. This translates into a finer degree of precision, because the step size at Terminal W is smaller. The voltage can be found as follows:

$$
\begin{equation*}
V_{W}(D)=\frac{\left(R_{A B} / / R_{2}\right)}{R_{3}+R_{A B} / / R_{2}} \times \frac{D}{1024} \times V_{D D} \tag{17}
\end{equation*}
$$

Figure 58. Lowering the Nominal Resistance
Figure 57 and Figure 58 show that the digital potentiometers change steps linearly. On the other hand, pseudolog taper adjustment is usually preferred in applications such as audio control. Figure 59 shows another type of resistance scaling. In this configuration, the smaller the R 2 with respect to R_{AB}, the more the pseudolog taper characteristic of the circuit behaves.

Figure 59. Resistor Scaling with Pseudo Log Adjustment Characteristics
The equation is approximated as

$$
\begin{equation*}
R_{e q}=\frac{D \times R_{A B}+51200}{D \times R_{A B}+51200+1024 \times R} \tag{18}
\end{equation*}
$$

Users should also be aware of the need for tolerance matching as well as for temperature coefficient matching of the components.

RESISTANCE TOLERANCE, DRIFT, AND TEMPERATURE COEFFICIENT MISMATCH CONSIDERATIONS

In a rheostat mode operation such as gain control (see Figure 60), the tolerance mismatch between the digital potentiometer and the discrete resistor can cause repeatability issues among various systems. Because of the inherent matching of the silicon process, it is practical to apply the dual-channel device in this type of application. As such, R1 can be replaced by one of the channels of the digital potentiometer and programmed to a specific value. R2 can be used for the adjustable gain. Although it adds cost, this approach minimizes the tolerance and temperature coefficient mismatch between R1 and R2. This approach also tracks the resistance drift over time. As a result, these less than ideal parameters become less sensitive to system variations.

Figure 60. Linear Gain Control with Tracking Resistance Tolerance, Drift, and Temperature Coefficient

Note that the circuit in Figure 61 can track tolerance, temperature coefficient, and drift in this particular application. The characteristic of the transfer function is, however, a pseudologarithmic rather than a linear gain function.

Figure 61. Nonlinear Gain Control with Tracking Resistance Tolerance and Drift

RDAC CIRCUIT SIMULATION MODEL

The internal parasitic capacitances and the external capacitive loads dominate the ac characteristics of the RDACs. Configured as a potentiometer divider, the -3 dB bandwidth of the AD5235 ($25 \mathrm{k} \Omega$ resistor) measures 125 kHz at half-scale. Figure 14 provides the large signal BODE plot characteristics of the two available resistor versions, $25 \mathrm{k} \Omega$ and $250 \mathrm{k} \Omega$. A parasitic simulation model is shown in Figure 62.

Figure 62. RDAC Circuit Simulation Model $(R D A C=25 \mathrm{k} \Omega)$
The following code provides a macro model net list for the $25 \mathrm{k} \Omega$ RDAC:

```
* PARAM D = 1024, RDAC = 25E3
.SUBCKT DPOT (A, W, B)
CA A 0 11E-12
RWA A W {(1-D/1024)* RDAC + 50}
CW W 0 80E-12
RWB W B {D/1024 * RDAC + 50}
CB B 0 11E-12
.ENDS DPOT
```


OUTLINE DIMENSIONS

Figure 63. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)
Dimensions shown in millimeters

ORDERING GUIDE

Model	$\begin{aligned} & \mathbf{R}_{\text {wB }} \text { Fs } \\ & \left(\mathbf{k S}^{2}\right) \end{aligned}$	RDNL	RINL	Temperature Range	Package Description	Package Option	Ordering Quantity	Branding ${ }^{1}$
AD5235BRU25	25	± 2	± 4	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP-16	RU-16	96	5235B25
AD5235BRU25-RL7	25	± 2	± 4	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP-16	RU-16	1,000	5235B25
AD5235BRUZ25 ${ }^{2}$	25	± 2	± 4	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP-16	RU-16	96	5235B25
AD5235BRUZ25-RL7 ${ }^{2}$	25	± 2	± 4	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP-16	RU-16	1,000	5235B25
AD5235BRU250	250	± 2	± 4	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP-16	RU-16	96	5235B250
AD5235BRU250-RL7	250	± 2	± 4	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP-16	RU-16	1,000	5235B250
AD5235BRUZ250 ${ }^{2}$	250	± 2	± 4	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP-16	RU-16	96	5235B250
AD5235BRUZ250-RL7 ${ }^{2}$	250	± 2	± 4	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP-16	RU-16	1,000	5235B250
AD5235EVAL25	25						1	
AD5235EVAL250	250						1	

${ }^{1}$ Line 1 contains the ADI logo followed by the date code, $Y Y W W$. Line 2 contains the model number followed by the end-to-end resistance value (note: $\mathrm{D}=250 \mathrm{k} \Omega$). -OR-
Line 1 contains the model number. Line 2 contains the ADI logo followed by the end-to-end resistance value. Line 3 contains the date code, YYWW. ${ }^{2} Z=P b$-free part.

[^0]: ${ }^{1}$ The terms nonvolatile memory and EEMEM are used interchangeably.
 ${ }^{2}$ The terms digital potentiometer and RDAC are used interchangeably.
 ${ }^{3} \mathrm{R}_{A B}$ tolerance.

[^1]: ${ }^{1}$ Typicals represent average readings at $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$.
 R-DNL measures the relative step change from ideal between successive tap positions. $I_{W} \sim 50 \mu A$ for $V_{D D}=2.7 \mathrm{~V}$ and $I_{W} \sim 400 \mu A$ for $V_{D D}=5 \mathrm{~V}$ (see Figure 25).
 ${ }^{3}$ INL and DNL are measured at V_{w} with the RDAC configured as a potentiometer divider similar to a voltage output $D A C . V_{A}=V_{D D}$ and $V_{B}=V_{S S}$. $D N L$ specification limits of ± 1 LSB maximum are guaranteed monotonic operating conditions (see Figure 26).
 ${ }^{4}$ Resistor Terminals A, B, and W have no limitations on polarity with respect to each other. Dual-supply operation enables ground-referenced bipolar signal adjustment.
 ${ }^{5}$ Guaranteed by design and not subject to production test.
 ${ }^{6}$ Common-mode leakage current is a measure of the dc leakage from any Terminal B-W to a common-mode bias level of $\mathrm{V}_{\mathrm{DD}} / 2$.
 ${ }^{7}$ EEMEM restore mode current is not continuous. Current consumed while EEMEM locations are read and transferred to the RDAC register (see Figure 22). To minimize power dissipation, a NOP, Instruction $0(0 \times 0)$ should be issued immediately after Instruction 1 (0×1).
 ${ }^{8} \mathrm{P}_{\text {DISS }}$ is calculated from ($\left.\mathrm{I}_{D D} \times \mathrm{V}_{D D}\right)+\left(\mathrm{I}_{S S} \times \mathrm{V}_{S S}\right)$.
 ${ }^{9}$ All dynamic characteristics use $\mathrm{V}_{\mathrm{DD}}=+2.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{SS}}=-2.5 \mathrm{~V}$.

[^2]: ${ }^{1}$ Typicals represent average readings at $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{D D}=5 \mathrm{~V}$.
 ${ }^{2}$ Propagation delay depends on the value of $V_{D D}, R_{P u L L}$ up, and C_{L}.
 ${ }^{3}$ Valid for commands that do not activate the RDY pin.
 ${ }^{4}$ RDY pin low only for Instructions $2,3,8,9,10$, and the $\overline{P R}$ hardware pulse: CMD_8~1 ms; CMD_9, $10 \sim 0.1 \mathrm{~ms} ; C M D _2,3 \sim 20 \mathrm{~ms}$. Device operation at $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ and $V_{D D}<3 \mathrm{~V}$ extends the save time to 35 ms .
 ${ }^{5}$ Endurance is qualified to 100,000 cycles per JEDEC Standard 22 , Method A117 and measured at $-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$; typical endurance at $+25^{\circ} \mathrm{C}$ is 700,000 cycles.
 ${ }^{6}$ Retention lifetime equivalent at junction temperature $\left(\mathrm{T}_{\mathrm{J}}\right)=55^{\circ} \mathrm{C}$ per JEDEC Standard 22, Method A117. Retention lifetime based on an activation energy of 0.6 eV derates with junction temperature in the Flash/EE memory.

[^3]: ${ }^{1}$ The SDO output shifts out the last 24 bits of data clocked into the serial register for daisy-chain operation. Exception: for any instruction following Instruction 9 or 10, the selected internal register data is present in Data Bytes 0 and 1. The instructions following Instructions 9 and 10 must also be a full 24-bit data-word to completely clock out the contents of the serial register.
 ${ }^{2}$ The RDAC register is a volatile scratchpad register that is refreshed at power-on from the corresponding nonvolatile EEMEM register.
 ${ }^{3}$ Execution of these operations takes place when the $\overline{C S}$ strobe returns to logic high.
 ${ }^{4}$ Instruction 3 writes two data bytes (16 bits of data) to EEMEM. In the case of Addresses 0 and 1, only the last 10 bits are valid for wiper position setting.
 ${ }^{5}$ The increment, decrement, and shift instructions ignore the contents of the shift register Data Bytes 0 and 1.

